MTH 201 Multivariable calculus and differential equations Homework 4 Differentiation

1. Find all partial derivatives at (0,0) (if exist) for each of the following function

(a)
$$f(x,y) = e^{xy} \sin(x^2 + y^2)$$

(b) $f(x,y) = \frac{\sin x}{1+y^2}$
(c) $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}, (x,y) \neq (0,0) \text{ and } f(0,0) = 0$ (HW)
(d) $f(x,y) = \frac{x^2 \sin^2 y + y^2 \sin^2 x}{x^2 + y^2}, (x,y) \neq (0,0) \text{ and } f(0,0) = 0$

- 2. Find an equation of tangent plane to the given surface at the specified point
 - (a) $z = xe^{xy}$ at P(1, 0, 1) (HW) (b) $z = y^2 - x^2$ at P(1, 1, 0)(c) $z = 3y^2 - x^2 - 3x$ at P(2, -1, -7)
- 3. Find $\frac{dz}{dt}$ in the following examples
 - (a) $z = x^2 + y^2$; $x = \cos t$, $y = \sin t$
 - (b) $z = x^2 + y^2$; $x = \cos t \sin t$, $y = \cos t + \sin t$
- 4. Let z = f(x, y); $x = r \cos \theta$, $y = r \sin \theta$. Find $\frac{\partial z}{\partial r}$, $\frac{\partial z}{\partial \theta}$, and $\frac{\partial^2 z}{\partial \theta^2}$. (HW)
- 5. Find the directional derivative of the function $f(x, y) = x^3 3xy + 4y^2$ in the direction of unit vector $\mathbf{u} = \langle \cos \pi/6, \sin \pi/6 \rangle$.
- 6. For $Y \in \mathbb{R}^3$ consider the function f defined by $f(X) = Y \cdot X$, $X = (x, y, z) \in \mathbb{R}^3$. Do directional derivatives of f exist in all directions? Is f differentiable at (0, 0, 0).
- 7. Prove that if $f : \mathbb{R}^3 \to \mathbb{R}$ is differentiable at $X_0 = (x_0, y_0, z_0)$, then directional derivatives (HW) of f exist in all directions.
- 8. Consider the function defined by $f(x,y) = \frac{x^2y^2}{x^2+y^2}$, $(x,y) \neq (0,0)$ and f(0,0) = 0. Show (HW) that f is differentiable at (0,0).