MTH 201

Multivariable calculus and differential equations
 Homework 4
 Differentiation

1. Find all partial derivatives at $(0,0)$ (if exist) for each of the following function
(a) $f(x, y)=e^{x y} \sin \left(x^{2}+y^{2}\right)$
(b) $f(x, y)=\frac{\sin x}{1+y^{2}}$
(c) $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}},(x, y) \neq(0,0)$ and $f(0,0)=0$
(d) $f(x, y)=\frac{x^{2} \sin ^{2} y+y^{2} \sin ^{2} x}{x^{2}+y^{2}},(x, y) \neq(0,0)$ and $f(0,0)=0$
2. Find an equation of tangent plane to the given surface at the specified point
(a) $z=x e^{x y}$ at $P(1,0,1)$
(b) $z=y^{2}-x^{2}$ at $P(1,1,0)$
(c) $z=3 y^{2}-x^{2}-3 x$ at $P(2,-1,-7)$
3. Find $\frac{d z}{d t}$ in the following examples
(a) $z=x^{2}+y^{2} ; x=\cos t, y=\sin t$
(b) $z=x^{2}+y^{2} ; x=\cos t-\sin t, y=\cos t+\sin t$
4. Let $z=f(x, y) ; x=r \cos \theta, y=r \sin \theta$. Find $\frac{\partial z}{\partial r}, \frac{\partial z}{\partial \theta}$, and $\frac{\partial^{2} z}{\partial \theta^{2}}$.
5. Find the directional derivative of the function $f(x, y)=x^{3}-3 x y+4 y^{2}$ in the direction of unit vector $\mathbf{u}=\langle\cos \pi / 6, \sin \pi / 6\rangle$.
6. For $Y \in \mathbb{R}^{3}$ consider the function f defined by $f(X)=Y \cdot X, X=(x, y, z) \in \mathbb{R}^{3}$. Do directional derivatives of f exist in all directions? Is f differentiable at $(0,0,0)$.
7. Prove that if $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is differentiable at $X_{0}=\left(x_{0}, y_{0}, z_{0}\right)$, then directional derivatives (HW) of f exist in all directions.
8. Consider the function defined by $f(x, y)=\frac{x^{2} y^{2}}{x^{2}+y^{2}},(x, y) \neq(0,0)$ and $f(0,0)=0$. Show (HW) that f is differentiable at $(0,0)$.
